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Abstract

In this work we introduce an Eulerian–Eulerian formulation for gravity currents driven by inertial particles. The model is based on the
equilibrium Eulerian approach and on an asymptotic expansion of the two-phase flow equations. The final model consists of conserva-
tion equations for the continuum phase (carrier fluid), an algebraic equation for the disperse phase (particles) velocity that accounts for
settling and inertial effects, and a transport equation for the disperse phase volume fraction. We present highly resolved two-dimensional
(2D) simulations of the flow for a Reynolds number of Re ¼ 3450 (this particular choice corresponds to a value of Grashof number of
Gr ¼ Re2=8 ¼ 1:5� 106) in order to address the effect of particle inertia on flow features. The simulations capture physical aspects of
two-phase flows, such as particle preferential concentration and particle migration down turbulence gradients (turbophoresis), which
modify substantially the structure and dynamics of the flow. We observe the migration of particles from the core of Kelvin–Helmholtz
vortices shed from the front of the current as well as their accumulation in the current head. This redistribution of particles in the current
affects the propagation speed of the front, bottom shear stress distribution, deposition rate and sedimentation. This knowledge is helpful
for the interpretation of the geologic record.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Turbidity currents; Gravity currents; Density currents; Sediment deposits; Bottom shear stress; Two-phase flow; Equilibrium Eulerian model;
Spectral methods
1. Introduction

Gravity or density currents are flows driven by lateral
pressure gradients produced by the action of gravity on flu-
ids with different density. The density difference can be due
to scalar fields such as temperature or salinity for which the
excess density is conserved over the bulk, or by particles in
suspension that may settle or be re-entrained into the flow.
For this reason particle-driven gravity currents are also
known as non-conservative gravity currents (Garcı́a, 1992).
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Particulate gravity currents, commonly known as
turbidity currents, can be observed in many engineering,
environmental and geological applications and they are
the focus of the present work. In most of the cases the cur-
rents are dilute and the density difference is only a few per-
cents, however, this is enough to trigger swift flows with a
large transport capacity of mass and energy. Bagnold
(1962) was among the first to discuss the conditions for
auto-suspending turbidity currents. The sediment deposits
generated by turbidity currents have also been of great
interest to petroleum geologists (Kuenen and Migliorini,
1950). One of the most interesting property of particulate
gravity currents is that they can modify their driving force
via deposition and resuspension of particles. If particle
entrainment prevails over deposition, the current will even-
tually accelerate and attain very high velocities (Parker
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et al., 1986). In the ocean, for example, sediment slumps
can trigger gravity currents capable of traveling very long
distances (Heezen and Ewing, 1952; Mohrig et al., 1998).
These strong flows can carve out submarine canyons
(Fukushima et al., 1985) and mold the seabed producing
different bedforms patterns such as ripples, dunes, antidun-
es and gullies (Allen, 1985). The dynamics of particulate
gravity currents is also relevant for dusty thunderstorm
fronts (Droegemeier and Wilhelmson, 1987), pyroclastic
flows produced in volcano eruptions (Sparks et al., 1991),
aerosol releases in the environment, flows originated by
the discharge of a sediment-laden flow into a lake (Nor-
mark and Dickson, 1976) and snow avalanches (Hopfinger,
1983). Many more examples can be found in the books by
Simpson (1997) and Allen (1985).

Particulate gravity currents have received a vast amount
of attention in the past. Garcı́a and Parker (1989) investi-
gated the formation of internal hydraulic jumps produced
when a current finds a change in slope. The formation of
the jump is associated with a change in the flow regime
and influences sediment transport capacity. Garcı́a et al.
(1993) studied the erosion capacity of gravity currents
and developed an empirical entrainment function that
links the bottom shear stress with the rate of sediment
entrainment into suspension. Depositional particulate
gravity currents have been studied by Gladstone et al.
(1998) for bidisperse particles and by Altinakar et al.
(1990) and Garcı́a (1994) in the context of poorly sorted
sediment. Bonnecaze et al. (1993), Bonnecaze et al.
(1995), Bonnecaze and Lister (1999) and de Rooij and
Dalziel (2001) have studied depositional gravity currents
in planar and cylindrical geometrical settings. Best et al.
(2001) have focused on mean flow and turbulence structure
of particulate gravity currents. Shallow water equation
models have been used to study the dynamics of particu-
late currents and resulting deposition patterns (Bonnecaze
et al., 1993; Choi and Garcı́a, 1995). Recently, fully
resolved simulations (Necker et al., 2002; Necker et al.,
2005; Blanchette et al., 2005) have been performed for par-
ticle-driven gravity currents. These simulations have
allowed clear interpretation of the flow dynamics and their
relation to depositional patterns.

Particulate currents differ from thermal or saline cur-
rents in their fundamental feature that the particles, which
are the source of density variation, do not exactly follow
the fluid. In contrast, in the case of scalar currents the ther-
mal or saline concentration fields are advected at the local
fluid velocity. In the limit of small particles the primary
source of relative velocity between the particles and the sur-
rounding fluid is due to gravity induced settling of parti-
cles. Most prior theoretical and numerical investigations
of particulate currents have been limited to this regime.
The velocity of particles in these studies is chosen to differ
from the local fluid velocity by a constant settling velocity
in the direction of gravity and the settling velocity is typi-
cally assumed to be the same as that of an isolated particle
freely settling in still fluid.
Several geological phenomena involve the transport of
coarse particles by gravity currents. Such finite sized parti-
cles do not follow the surrounding fluid exactly and settling
velocity is only one of the mechanisms contributing to the
relative velocity. The finite inertia of the particles becomes
important with additional contribution to relative velocity
arising from the inertial response of particles in regions of
strong fluid acceleration. In regions of rectilinear fluid accel-
eration (or deceleration), inertial particles may lag (or lead)
the fluid substantially. Also, in regions of curved stream-
lines the particle pathlines may not curve as rapidly as the
fluid surrounding them. In the context of high Reynolds
number turbulent flows it is well known that inertial parti-
cles tend to exhibit preferential concentration, with local
accumulation in regions of high strain-rate and avoiding
regions of high vorticity (Squires and Eaton, 1991; Wang
and Maxey, 1993). In the context of gravity currents, this
has implications for the distribution of particles in the
highly vortical regions of the front of the current and along
the interface between the heavy and the light fluids. Since
the density difference due to the suspended particles is the
main cause of the flow, the redistribution of particles will
in turn alter the dynamics of the current. Furthermore, pro-
cesses such as deposition, erosion and resuspension can also
be influenced by the inertial behavior of the particles.

In this work we focus attention on the effect of particle
inertia on the dynamics of the particulate gravity current.
We will also address the influence on flow features and
deposition patterns. We use the equilibrium Eulerian
approach (Ferry and Balachandar, 2001; Ferry et al.,
2002; Ferry et al., 2003) to account for the inertial effect
of particles. The advantage of this approach is that the rel-
ative velocity between the particles and the surrounding
fluid flow is given by an explicit expression, without having
to solve additional equations for the particulate velocity
field. The equilibrium Eulerian velocity and the mathemat-
ical model to be employed is presented in Section 2, which
is followed by a brief description of the formulation of the
problem in Section 3. In Section 4 the numerical methodol-
ogy is described. Then, we present two-dimensional (2D)
direct numerical simulations and assess the effect of finite
inertia on the current structure, front velocity, bed shear
stress and deposition pattern in Section 5. Finally, sum-
mary and conclusions are drawn in Section 6.

2. Mathematical model

We are interested in simulating buoyant flows driven by
the presence of solid particles of finite size. In this situation
particles not only modify the bulk density as in the dusty
gas formulation (Marble, 1970), but move at a velocity that
differs from the local surrounding fluid velocity. We limit
attention to dilute suspensions where the volume concen-
tration of particles (/d) is taken to be small. Particle con-
centration will be considered to be low not only in the
mean, but also locally even in regions of preferential accu-
mulation, and thus complex issues surrounding local inter-
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particle interactions will be ignored. The effective density
variation within the flow will be sufficiently low that we will
employ Boussinesq approximation. The inertial effect of
the particles is the focus of this study and thus the relative
velocity between the particles and the surrounding flow is
due to both gravitational settling and particle inertia. How-
ever, dimensionless particle inertia, defined in terms of
Stokes number (~s-ratio of particle time scale to fluid time
scale), will be considered sufficiently small that equilibrium
approximation can be used (Ferry and Balachandar, 2001;
Ferry et al., 2002; Ferry et al., 2003). By limiting ~s to suf-
ficiently small values we can express the particle velocity in
terms of surrounding fluid velocity. For the case of large ~s,
a Lagrangian treatment of particles is required since the
effect of initial conditions does not decay sufficiently rap-
idly. Here we develop a new formulation that includes
the role of particle inertia in the interest to simulate gravity
currents at environmental and geological scales. In this
section we present an Eulerian–Eulerian model based on
an asymptotic expansion of the two-phase flows equations
in parameters describing the (dimensionless) particle
inertia (~s) and the (dimensionless) particle volumetric
concentration (~/d). The model is formally exact to
Oð~s ~/d þ ~s2 þ ~/2

dÞ and consists of conservation equations
for the continuous phase (carrier fluid), an algebraic equa-
tion for the disperse phase (particles) velocity, and a trans-
port equation for the particle volume fraction.

Let indices c and d denote the continuous and disperse
phases, respectively. We denote the densities, volume frac-
tions, and velocities of each phase by qc, /c, uc, and qd , /d ,
ud , respectively. In the case of constant density phases and
no mass transfer between phases the mass conservation
equations can be expressed as (Zhang and Prosperetti,
1997; Drew and Passman, 1998)

o/c

ot
þ $ð/cucÞ ¼ 0 and ð1Þ

o/d

ot
þ $ð/dudÞ ¼ 0; ð2Þ

where /c þ /d ¼ 1.
The process of obtaining the ensemble-averaged

momentum equations and their closure have been dis-
cussed in detail in the literature (Joseph and Lundgren,
1990; Zhang and Prosperetti, 1997; Drew and Passman,
1998; Machioro et al., 1999; Prosperetti, 2001). The result-
ing momentum equations for the continuous and disperse
phases can be expressed as

/cqc
Dcuc

Dt
¼ �/c$p þ lc$

2uv � F; ð3Þ

/dqd
Ddud

Dt
¼ /dðqd � qcÞg� /d$p þ F: ð4Þ

Here Dc=Dt and Dd=Dt indicate material derivatives follow-
ing the continuous phase velocity and the disperse phase
velocity, respectively, p is the dynamic pressure in the con-
tinuous phase (i.e. the potential qc x � g has been sub-
tracted), lc is the dynamic viscosity of the continuous
phase, g is the gravity vector, and F is the net hydrody-
namic interaction between phases. Observe that the viscous
term is a function of the volume averaged velocity
uv ¼ /cuc þ /dud (see Machioro et al., 1999).

For small particles, whose time scale is sufficiently smal-
ler than the flow time scale defined in terms of the maximal
compressional strain-rate, an Eulerian field representation
for particle velocity can be used and the equation of motion
for the particles can be solved explicitly to obtain an expli-
cit expansion for the particle velocity field as (Ferry and
Balachandar, 2001)

ud � uc þ Vs � sð1� bÞDcuc

Dt
; ð5Þ

where s is the particle response time, b depends on the par-
ticle to fluid density ratio (q ¼ qd=qc), and Vs is the still
fluid settling velocity of the particle, which are given by

s ¼ d2ðqþ 1=2Þ
18mc f

; b ¼ 3

2qþ 1
; and

Vs ¼ sð1� bÞg: ð6Þ

Here d is the particle diameter, f ¼ 1þ 0:15Re0:687
P is the

correction for non-Stokesian drag (Crowe et al., 1998) that
depends on particle Reynolds number ReP ¼ djuc � ud j=mc,
and mc is the kinematic viscosity of the continuous phase.
The particles have been assumed to be spherical and as a
result the added mass coefficient is taken to be 1=2. In
Eq. (5) it is assumed that the ratio of settling velocity to
the ambient flow velocity is small and of the order of
Stokes number. It can be shown that implicit in the equilib-
rium approximation for particle velocity given in Eq. (5) is
the assumption

Ddud

Dt
� Dcuc

Dt
: ð7Þ

Eq. (7) can be used to eliminate Ddud=Dt from Eq. (4),
which can be combined with Eq. (3) to obtain

½qc þ /dðqd � qcÞ�
Dcuc

Dt
¼ /dðqd � qcÞg� $p þ lc$

2uv:

ð8Þ

We consider the setting depicted in Fig. 1, where a channel
is filled at one end with the particulate mixture and is sep-
arated by a gate from the rest of the channel, which is filled
with clear fluid. When the simulation begins the gate is
lifted and the flow develops forming an underflow intrusion
of the mixture into the clear fluid (denoted by a solid line in
Fig. 1). Let the height of the channel (H) be the length
scale, U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gU ðq� 1ÞH

p
be the velocity scale and the ini-

tial volume fraction (U) be the particle volumetric concen-
tration scale, where g is the magnitude of the gravitational
acceleration. The time and pressure scales are correspond-
ingly defined as H=U and qcU

2, respectively. We consider
density variations to be small and use Boussinesq approx-
imation. The resulting governing equations in the dimen-
sionless form are
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Fig. 1. Sketch of a gravity current and nomenclature used in this work.
The flow is started from the initial condition shown by the shaded region
between dash lines. As the flow evolves, the intruding front develops the
structure of a head followed by a body.
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Dc~uc

D~t
¼ ~/d eg � $~p þ 1

Re
$2~uv; ð9Þ

r~uv ¼ 0; ð10Þ

~ud ¼ ~uc þ eVs � ~s
Dc~uc

D~t
; and ð11Þ

o~/d

o~t
þ $ð~/d~udÞ ¼

1

ScRe
$2 ~/d : ð12Þ

Here all dimensionless terms are denoted by a tilde on top,
and eg is a unit vector pointing in the direction of gravity.

The Reynolds number, defined as Re ¼ U H=mc charac-
terizes the strength of the current. Sc ¼ mc=j is the Schmidt
number, where j is the diffusivity of particles. The other
two controlling parameters define the suspended particles
in terms of particle Stokes number, ~s, and dimensionless
settling velocity, eVs, defined as

~s ¼ sð1� bÞU
H

and eVs ¼
Vs

U
; ð13Þ

respectively. These parameters characterize the inertial and
settling effects of the particle, respectively.

Note that for numerical stability of the spectral method
it is common practice to add a diffusion term to Eq. (12). In
the limit of ~s! 0 and jeVsj ! 0 the above governing equa-
tions reduce to those corresponding to a scalar gravity cur-
rent for which this term accounts for the diffusion of the
scalar field. In the present case of a particulate gravity cur-
rent this term can be taken to account for the departure of
particle motion from equilibrium prediction. Such depar-
tures arise from close interaction of particles, and in gen-
eral, diffusivity is a function of both local particle
concentration and local shear (Acrivos, 1995; Foss and
Brady, 2000). Nevertheless, solution of Eq. (12) with little
or no diffusion is numerically unstable, especially in the
context of spectral simulations.

According to Eq. (11) for ~s ¼ 0 the particle velocity is
simply the sum of local fluid velocity and the still fluid set-
tling velocity. This is the limit often considered in the case
of particulate currents. The last term on Eq. (11) arises
from the inertial behavior of particles and it accounts for
the velocity difference due to the inability of finite inertia
particles to move with the fluid in regions of fluid acceler-
ation. It must be pointed out that this term is only the first
order correction of Oð~sÞ and, as shown in Ferry and Bala-
chandar (2001), higher order terms of the expansion can be
formally derived starting from the equation of motion for
the particles. Numerical tests in a variety of turbulent flows
have shown that the Oð~sÞ correction included in Eq. (11) is
adequate to capture important inertial behaviors such as
preferential accumulation and turbophoretic migration of
particles of ~s 6 0:3 (Ferry and Balachandar, 2001; Ferry
et al., 2002; Ferry et al., 2003; Shotorban and Balachandar,
2006).

Note that from Eq. (11) we can express the volume aver-
aged mixture velocity as uv ¼ uc þ /d Vs þ Oð~s ~/dÞ. From
which it follows that to Oð~s ~/dÞ we can approximate

$2~uv � $2~uc and r � ~uc � 0: ð14Þ

The set of governing Eq. (9)–(12), with the approximations
in Eq. (14) form a complete Eulerian–Eulerian system of
equations for two-phase flows that include particle settling
and inertia effects. The equations are formally accurate to
O ~s~/d þ ~s2 þ ~/2

d

� �
. The main advantage of this system

compared to the original set of equations, i.e. Eq. (1)–(4),
is that the momentum equation for the dispersed phase
need not be solved as the particle velocity field is expressed
algebraically in terms of local fluid velocity by Eq. (11).
Another advantage is that the mathematical structure of
the simplified governing equations is similar to the stan-
dard single fluid incompressible Navier–Stokes equations,
and this allows the use of standard techniques developed
for incompressible flows for the present problem.

3. Formulation of the problem

Here we will examine the importance of particle inertia
and settling under typical scenarios encountered in indus-
trial, geological and environmental applications. From
the definition of the length, velocity and time scales intro-
duced above, the particle Stokes number and dimensionless
settling velocity can be written as

~s ¼ ðq� 1Þ5=3g2=3

18f m4=3
c

" #
d2U2=3Re�1=3 and ð15Þ

eV s ¼
~s

ðq� 1ÞU : ð16Þ

Consider the case of a turbidity current with sand particles
suspended in water. If we consider sand to water density
ratio to be about q � 2:65, and if we assume the relative
motion of particles with respect to the surrounding fluid
to be in the Stokes regime (f ¼ 1), then the prefactor with-
in the square parenthesis in the above equation can be esti-
mated to be 5:9� 107 m�2. Now if we consider a
suspension of 250 lm sand particles at a volume concentra-
tion of U ¼ 1% in a modest gravity current of Re ¼ 10000,
the resulting Stokes number based on mean flow time scale
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is 0.0079. The Stokes number will increase for larger parti-
cles and at higher concentration, but will decrease slowly
with increasing intensity of the current (i.e. increasing Re).

If we consider the example of dust storms, where sand
particles are suspended in air (q � 2000Þ, the prefactor in
Eq. (15) becomes 2:4� 1011 m�2. Now consider a suspen-
sion of 50 lm particles at a volume concentration of
U ¼ 0:1% in a current of Re ¼ 10000. The corresponding
Stokes number becomes ~s ¼ 0:28.

From (16) it can be readily seen that in a dilute suspension
(U � Oð10�2Þ) of light particles (q � Oð1Þ), as in the case of
turbidity currents, the relative magnitude of the settling
velocity can be much larger than the Stokes number. On
the other hand, for the case of heavy particles (q � Oð103Þ)
Stokes number can be much larger than dimensionless
settling velocity at sufficiently large concentration.

It is reasonable to nondimensionalize the settling veloc-
ity of particles with the velocity scale of the current, to
gauge the relative importance of particle settling. In
contrast, the Stokes number as defined above in Eq. (13)
accurately captures only the inertial response of particles
to mean scale motion. It is of interest to explore how
particle inertia and settling velocity scale with the smaller
scales of the flow. Crude estimates of the Kolmogorov
velocity and time scales (uk and sk) can be expressed in
terms of the Reynolds number of the flow as (see for exam-
ple Pope, 2000)

T
sk
� Re1=2 and

U
uk
� Re1=4; ð17Þ

from which it follows that

sþ ¼ ~s
T
sk
� Re1=6 and V þs ¼ fV s

U
uk
� Re�1=12 : ð18Þ

The inertial response of particles to turbulent eddies is at its
maximum when the time scale of the eddies matches that of
the particles. Eddies which are larger are of longer time
scale and they simply advect the particles, while eddies
much smaller are of shorter time scale and do not last long
enough to affect the particle motion. As illustrated in (17),
with increasing Re a wide range of time scales can be ex-
pected within the flow. Thus, we see that even though ~s,
which is based on mean flow scaling, may be much weaker
for inertial response of particles, at high enough Reynolds
number, some of the smaller scales of motion will be of
appropriate time scale for inertial response of the particles.
As we will see below in the simulations to be presented,
even modest values of ~s � 0:025 result in significant inertial
response from the particles.

In this work, we present 2D direct numerical simulations
for Re ¼ 3450. This particular choice corresponds to the
same value of Grashof number of Gr ¼ gUðq� 1ÞH 3=
m2

c ¼ 1:5� 106 used by Necker et al. (2002). We address
the effect of particle inertia on the flow structure, dynamics,
bed shear stress and deposition patterns by varying the
parameter ~s. In order to isolate the physics of particle iner-
tia, the present investigation neglects any interaction with
the bottom. We consider a pure depositional flow without
any resuspension and thus avoid the use of empirical par-
ticle resuspension relations (Garcı́a et al., 1993).

4. Numerical approach

The dimensionless governing equations are solved using
a de-aliased pseudospectral code (Canuto et al., 1988).
Fourier expansions are employed for the flow variables in
the horizontal direction (x). In the inhomogeneous vertical
direction (z) a Chebyshev expansion is used with Gauss–
Lobatto quadrature points. An operator splitting method
is used to solve the momentum equation along with the
incompressibility condition. With this method the flow field
is advanced from time ~tðnÞ to ~tðnþ1Þ in two steps. First, an
advection–diffusion equation is used to advance from time
level ~tðnÞ to an intermediate time level. After the intermedi-
ate level velocity field is determined, a Poisson equation is
solved to compute the pressure field. Finally, a pressure
correction step is used to advance the flow velocities to
the level ~tðnþ1Þ (see for example Brown et al., 2001). A
low-storage mixed third order Runge-Kutta and Crank-
Nicolson scheme is used for the temporal discretization
of the advection–diffusion terms. This scheme is carried
out in three stages. The time step from level ~tðnÞ to level
~tðnþ1Þ, D~t, is split into three smaller steps, with pressure cor-
rection at the end of each step. More details on the imple-
mentation of this numerical scheme can be found in
Cortese and Balachandar (1995).

The computational domain is a box of sizeeLx ¼ 25� eLz ¼ 1, which extends from ~x ¼ �12:5 to
~x ¼ 12:5 and from ~z ¼ 0 to ~z ¼ 1. The flow is initialized
from rest with ~/d ¼ 1 in ~x 2 ð�1; 1Þ for all ~z, and ~/d ¼ 0
otherwise with a smooth transition. The details of the ini-
tial condition can be found in Cantero et al. (2006). This
setting of the problem generates two currents moving from
the center outward. The solution was advanced in time
until the front reached location of ~x ¼ �11:5 to avoid the
influence of finite domain size (Härtel et al., 2000; Cantero
et al., 2007b). The simulations were performed using a res-
olution of Nx ¼ 1536� N z ¼ 150. It must be mentioned
that more resolution is needed for the particulate flow sim-
ulations compared to the corresponding scalar case (i.e.
same Re with ~s ¼ 0 and eVs ¼ 0).

Periodic boundary conditions are enforced for all the
variable in the horizontal direction. This is done due to
the characteristics of the spectral method used, however,
the computational domain is taken to be long enough
in the streamwise direction to allow free unhindered deve-
lopment of the current for a long time. At the top and
bottom walls no-slip and no-penetration conditions are
enforced for the continuous phase velocity. For the nor-
malized concentration of particles we apply

eV sz
~/d �

1

ScRe
o~/d

o~z
¼ 0; and

o~/d

o~z
¼ 0; ð19Þ

respectively, for the top and bottom walls, where eV sz is
the wall normal component of the normalized particle
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settling velocity. Volume integration of the normalized
concentration Eq. (12) on the computational domain V

shows that

d

dt

Z
V

~/d dV ¼
Z

oV

~/d~ud �
1

ScRe
r~/d

� �
� ð�nÞ dA; ð20Þ

where n is the surface outward normal and oV is the com-
putational domain boundary. Here the first terms in the
brackets on the right hand side corresponds to the convec-
tive flux of particles while the second term is the diffusive
flux and together they account for the total flux of particles
through the boundaries of the domain. At the top and bot-
tom walls due to no-slip and no-penetration conditions
~ud ¼ eVs and thus the boundary condition Eq. (19) at the
top wall corresponds to zero net flux of particles. At the
bottom wall, since the concentration gradient is set to zero,
the net flux of particles is due to settling of particles. Thus
here we consider a depositional flow, where the net concen-
tration of particles within the computational domain con-
tinually decreases due to the depositional flux of particles
through the bottom boundary. In many physical situations
there can be shear and turbulence induced resuspension of
particles from the bottom boundary. Empirical models of
resuspension yield a non-zero diffusive flux of particles at
the boundary expressed as a function of wall shear and par-
ticle Reynolds number (Garcı́a et al., 1993). In this work,
as the first step towards understanding the role of particle
inertia, we will avoid such empiricism and ignore resuspen-
sion of particles.

The solution of the concentration equation, even in the
limit of a scalar field, can lead to sharp concentration gra-
dients when diffusive effects are not adequately accounted
for in spectral methods. In order to avoid resulting
numerical difficulties, the Schmidt number of the scalar
field is typically limited to Oð1Þ. In the context of partic-
ulate concentration, the velocity of particle advection, ud ,
is different from the fluid velocity. More importantly, even
though r � uc ¼ 0, the corresponding divergence of parti-
cle velocity field will not be zero in case of inertial parti-
cles (i.e. if ~s 6¼ 0). This non-zero divergence of particle
velocity field results in preferential accumulation of parti-
cles in regions of high strain-rate and avoidance of
regions of high vorticity. Strong accumulation of particles
is observed even at moderate values of ~s (� 0:025) result-
ing in even sharper gradients. Thus the importance of the
diffusion terms is enhanced in the case of particulate
concentrations.

Tadmor (1989) and Karamanos and Karniadakis (2000)
have shown that spurious numerical behavior of the solu-
tion can be controlled by the use of a spectral viscosity
without sacrificing spectral accuracy. In this approach, dif-
fusion is increased for high wavenumbers to avoid Gibb’s
oscillations, but the effect on the large scales (small wave-
numbers) is minimized. However, since the flow has a pre-
dominant flow direction, numerical instabilities have been
observed to more likely occur in the direction of spreading
than in the vertical direction, suggesting that an anisotropic
implementation is needed. Based on these observations,
following (Karamanos and Karniadakis, 2000 and Rani
and Balachandar, 2003) the conservation of mass for the
disperse phase is modified to

o~/d

o~t
þ $ð~/d~udÞ ¼

1

ReSc
o

o~x
Qkx
	 o~/d

o~x

 !
þ o2 ~/d

o~z2

" #
: ð21Þ

Here Qkx
is a wavenumber dependent diffusivity kernel and

	 denotes the convolution operation in physical space., i.e.

o

o~x
Qkx
	 o~/d

o~x

 !
¼ �

X
kx

k2
x Q̂kx /̂d expði kx xÞ ð22Þ

where �̂ represents the Fourier coefficient and kx ¼ �Nx=2;
. . . ;Nx=2� 1 is the wavenumber along the horizontal
direction. The diffusivity kernel is computed as:

bQkx ¼
1 for jkxj 6M

1þ ðSc=ScsvÞ exp k2
x � N 2

x=4
� �

= k2
x �M2

� �	 

for jkxj > M :

(
ð23Þ

where Scsv and M < Nx=2 are free parameters to be se-
lected. Based on numerical considerations we have chosen
Sc ¼ 0:7, and, in agreement with the findings of Härtel
et al. (2000), Cantero et al. (2007a), Cantero et al.
(2007b), we also observe that the results to be presented
are not sensitive to this choice as long as Sc is kept order
1. Any attempt to control numerical oscillations by setting
Sc smaller than order 1 results in over diffusive solutions
where vortex shedding and Kelvin–Helmholtz instabilities
are strongly damped. Several numerical test were per-
formed to select adequate values for the diffusivity kernel.
The optimal choice that yields the highest quality result is
Scsv � 3� 10�4 N x, M � N x=16.

The numerical scheme requires the computation of the
material derivative of the continuous phase velocity,
Dcuc=Dt, at each time step to be used in the equilibrium
approximation for the disperse phase velocity field (see
Eq. (5)). The most stable, efficient and accurate way of
computing this material derivative was employing a third
order explicit approximation based on the continuous
phase velocity over the four previous stages.

5. Results and discussion

First we explore the effect of inertia in isolation, without
any gravitational settling of particles, by setting eV s ¼ 0.
Although this is an idealized case, it can be considered as
the limiting case of small heavy particles for whicheV s=~s! 0. In the second part of the results section we
include settling effects and explore the influence of particle
inertia on deposition patterns.

5.1. Front velocity

The height of the heavy current, ~h, as a function of the
streamwise location can be defined as
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~hð~x;~tÞ ¼
Z 1

0

~/dð~x;~z;~tÞd~z: ð24Þ

Thus at locations entirely occupied by the heavy particle
laden fluid the current height will be 1.0 and in regions of
pure fluid devoid of suspended particles the current height
will be zero. The streamwise location of the current front,
~xF, can be unambiguously defined as the point where the
current height, ~h, reaches zero. In practice, although ~h re-
mains quite small, it does not become identically zero
ahead of the current front due to diffusion. As a result a
small threshold is used to identify the front location and
the results are insensitive to the precise choice of the thresh-
old (see details of definition in Cantero et al., 2007b). The
front velocity can then be computed as

~uF ¼
d~xF

d~t
: ð25Þ

Fig. 2 shows the time evolution of the front velocity for
three different values of ~s ¼ 0, 0:025 and 0:05 at
Re ¼ 3450. Three regimes can be clearly distinguished in
this figure, an initial acceleration phase, followed by a con-
stant velocity phase, and a final phase of decay. Cantero
et al. (2007b) presented a detailed analysis of these velocity
phases in the context of scalar currents (i.e. ~s ¼ 0 andeV s ¼ 0). The current rapidly accelerates from its initial rest
state and reaches a peak velocity at a dimensionless time of
about ~t � 1.

It is interesting to note that during this initial accelera-
tion phase the inertia of the suspended particles does not
seem to make a large difference on the front velocity of
the current. A close-up of the front velocity during the
acceleration phase is shown in Fig. 2 as an inset. It can
be seen that at the very early stages the inertia of the sus-
t
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Fig. 2. Front velocity as a function of time for eV s ¼ 0. Solid line: ~s ¼ 0,
dash-dot line: ~s ¼ 0:025 and dash line: 0.05. In the figure AP: acceleration
phase, SP: slumping phase, and VP: viscous phase. Observe in the inset
frame that during the initial acceleration phase the fronts corresponding
with particulate front move slightly slower than the scalar case due to the
inertial correction.
pended particles tends to slow the current, which can be
explained by noticing that as the current accelerates from
the gate Dc~uc=D~t is positive and, from Eq. (11), the stream-
wise velocity of the particles can be estimated to lag behind
the fluid. From the inset it is also observed that at the later
stages of acceleration the inertia of the particles tend to
speed up the front and as a result the peak front velocity
attained by the particulate current appears to be insensitive
to ~s.

The inertial correction, �~sD~u=D~t, can be observed in
Fig. 3 for ~t ¼ 1:77. Fig. 3a shows contours of the carrier
fluid horizontal velocity (solid line) together with the hori-
zontal component of the particles velocity (dash line). The
thick long-dash line is the contour of ~/d ¼ 0:5 and gives an
indication of the front location. Fig. 3b shows the horizon-
tal component of the inertial correction �~sD~u=D~t (solid
lines), and inertial correction vector field. At this time there
is increased difference between the horizontal component
of the fluid velocity and particles velocity as shown in
frame (a). In frame (b) the vector field shows clearly the
non-solenoidal nature of the inertial correction with the
vector field converging at the top and bottom fronts.
Observe that this convergence of the velocity field implies
injection of particles into the heavy front at the bottom,
which breaks the symmetry of the problem shown by the
~/d ¼ 0:5 line. The divergence of the inertial correction vec-
tor field is related to the newly formed Kelvin–Helmholtz
vortices at the heavy and light fronts. As will be explained
later, particles migrate from vortical regions and accumu-
late along regions of high shear.

Following the peak velocity the propagation of the cur-
rent somewhat slows down before reaching a near con-
stant front velocity. This deceleration of the current has
been observed to coincide with roll up of the interfacial
shear layer between the heavy and light fluids into coher-
ent vortices. In the context of a scalar current it was
observed (Cantero et al., 2007b) that the incipient roll
up of the Kelvin–Helmholtz vortices started at around
~t � 1 and was nearly complete by ~t � 2:5. Fig. 4 shows
contours of swirling strength at four time instances
~t ¼ 1:06, 1:77, 2:47 and 4:24, which are also indicated in
Fig. 2. Here the swirling strength, ~kci, is defined as the
absolute value of the imaginary portion of the complex
eigenvalues of the local velocity gradient tensor.1 Frame
(a) of this figure shows the results for ~s ¼ 0:0, frame (b)
the results for ~s ¼ 0:025 and frame (c) the results for
~s ¼ 0:05. The values of peak swirling strength for the
dominant vortices are indicated. During the deceleration
subphase (at ~t ¼ 1:06, 1:77 and 2:47), the interface roll-
up produces strong Kelvin–Helmholtz vortices, which
1 The local velocity gradient tensor has three eigenvalues. If all three
eigenvalues are real then locally the flow is not swirling and ~kci is set to
zero. If the local velocity gradient tensor has one real and a complex
conjugate pair of eigenvalues, the imaginary part of the complex
eigenvalue provides a clean measure of the local swirling strength (Zhou
et al., 1999; Chakraborty et al., 2005).
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seem to regulate the value of the constant velocity of
spreading in the slumping phase. With the presence of
inertial particles the strength of the rolled up vortices
weakens as indicated by the values of swirling strength
during the deceleration subphase. This can perhaps be
explained by the fact that inertial particles lag the fluid
and cannot spin at the same rate of fluid elements. The
consequence is a reduction in the deceleration rate.

Following the acceleration–deceleration phase the cur-
rent settles to a near constant velocity in the slumping
phase. The front velocities during this phase are 0:407,
0:415 and 0.432 for ~s ¼ 0, ~s ¼ 0:25 and ~s ¼ 0:05, respec-
tively. Thus, for the largest inertial particles considered
here the constant slumping phase velocity has increased
by about 6.1%. Cantero et al. (2007b) observed the front
velocity of a scalar current in the slumping phase to be well
captured by 2D simulations, since the dominant rolled up
Kelvin–Helmholtz vortices remain sufficiently behind of
the front. This behavior can be expected to remain unaf-
fected for the case of the particulate currents as well. In
the present simulations the constant velocity slumping
phase extends over only a short period due to the limited
amount to heavy fluid released. In the case of a large-vol-
ume release the constant velocity phase will persist for a
long duration and the increased front velocity in a particu-
late current can significantly alter the arrival time of the
current. The increase in front velocity with increasing
inertial effect of the particles is due to particle accumu-
lation near the head of the current and will be discussed
below.

At high enough Reynolds number the constant velocity
slumping phase will transition to an inertial phase, where
the dominant balance is between gravity and inertia. The
asymptotic behavior of a scalar current in the inertial phase
shows a slow decay in the front velocity as ~uF � ~t�1=3 (Fay,
1969; Hoult, 1972; Huppert and Simpson, 1980). The time
of transition from constant velocity to a slow inertial decay
can be estimated to be Cantero et al. (2007b)

~tSI ¼
0:94~x0

~h0

F 3
p;sl

; ð26Þ

where ~h0 and ~x0 are the dimensionless height and half-
length of the initial release and F p;sl is the approximate con-
stant velocity of the front in the slumping phase. Thus,
with increasing constant front velocity during the slumping
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phase, the transition to inertial phase occurs earlier. For
the present case of ~h0 ¼ ~x0 ¼ 1 the slumping-to-inertial
transition times can be estimated as ~tSI ¼ 13:9, 13:1 and
11:6 for the cases of ~s ¼ 0, 0:025 and 0:05, respectively.

However, at lower current strengths (i.e. at lower Re) a
direct transition from slumping to viscous phase will occur
without going through an inertial phase (Cantero et al.,
2007b). The transition time from slumping to viscous phase
can be estimated as

~tSV ¼
0:57ð~h0~x0Þ3=4

F 5=4
p;sl

Re1=4 : ð27Þ

Here again the transition will occur earlier with increasing
constant front velocity during the slumping phase. For the
three ~s ¼ 0, 0:025 and 0:05 cases the transition times can be
estimated as ~tSV ¼ 13:5, 13:1 and 12:5. Thus, for the present
modest Re, the estimated slumping to viscous transition
times are very close to the slumping to inertia transition
times. In fact, simple theoretical arguments show that for
a full-depth planar current of unit initial release
(~h0 ¼ ~x0 ¼ 1) to enter the inertial phase the Reynolds num-
ber of release must be greater than �3:4� 103 (Cantero
et al., 2007b). The Re ¼ 3450 of the present simulation is
clearly in the critical range and as a result if an inertial
phase were to exist its extent will be quite limited and the
current can be expected to transition quickly to the viscous
phase. The transition times observed in Fig. 2 are in rea-
sonable agreement with the theoretical estimates for the
cases of ~s ¼ 0 and 0.025. For the larger inertial particles,
the computed transition from the slumping phase is ob-
served to occur somewhat earlier. Clearly the theoretical
predictions are for a scalar current and they do not account
for the inertial effect of particles. In the viscous phase the
front velocity of both the scalar and the particulate cur-
rents are observed to decay at about the same rate.
Although, the velocity for the ~s ¼ 0:05 case is consistently
a little lower than for the other two cases.
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5.2. Preferential accumulation

The concentration Eq. (12) can be rewritten in the fol-
lowing form

Dd
~/d

D~t
¼ 1

ScRe
r2 ~/d � ~/dr � ~ud : ð28Þ

From which it can be seen that in a scalar current, where
r � ~ud ¼ r � ~uc ¼ 0, at all later times the local concentra-
tion of scalar is guaranteed to be lower than the initial uni-
form concentration before release in the heavier fluid. This
is however not the case for particulate currents, where the
divergence of particle velocity can be non-zero. The equi-
librium approximation provides a convenient way to ob-
tain the divergence of particle velocity. By taking the
divergence of Eq. (11) we obtain

r � ~ud ¼ ~sðkXck2 � kSck2Þ; ð29Þ

where Xc and Sc are the skew-symmetric and symmetric
parts of the local fluid velocity gradient tensor, respec-
tively. Note that $~ud > 0 when kXck > kSck, which implies
that particles migrate from regions of vorticity and accu-
mulate in regions of high strain-rate. This preferential
migration of particles increases with increasing ~s.

Fig. 5 shows the structure of the current in the scalar
limit (eV s ¼ 0 and ~s ¼ 0) at four different time instances.
The flow is visualized by contours of particle concentra-
tion. Soon after release an intrusion front forms with a
lifted nose due to the no-slip boundary condition. As the
current advances Kelvin–Helmholtz vortices form at the
interface, which together with bottom drag, balances the
initial acceleration of the heavy front. As a consequence,
after the initial set-up of the Kelvin–Helmholtz vortices,
the front moves at constant speed until dilution and viscous
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Fig. 5. Contours of particles concentration. Solid line: 0:1 < ~/d < 1, dash line:
of ~/d .
effects in the current become important. Then, the current
slows down and eventually dissipates.

Figs. 6 and 7 show the corresponding results for currents
with inertial particles of negligible settling, that is for
~s ¼ 0:025 and ~s ¼ 0:05 with eV s ¼ 0. The solid lines indicate
contours of ~/d 6 1, and dash lines correspond to ~/d P 1.
Particulate currents differ from their scalar counterpart in
several ways. First, regions of ~/d P 1 are not present in
the scalar current as can be expected on theoretical
grounds. In contrast, significant regions of ~/d P 1 can be
observed in case of particulate currents. At early times
(~t < 10) these regions of increased concentration can be
observed to extend right behind the head of the current.
This provides support for the sustained increase in the con-
stant velocity of the particulate current in the slumping
phase. At later times, when the current enters the inertial
and viscous phases, such enhanced concentrations are not
observed and accordingly the propagation of the particu-
late currents is not faster.

Also shown in Figs. 5–7 at early times are the particle
concentration levels at the center of the rolled up Kelvin–
Helmholtz vortices. It is clear that with particle inertia
the concentration of particles at the cores of the vortices
has reduced to zero. Particles, owing to their inertia, are
expected to spin out of the coherent vortices resulting in
vortex cores devoid of particles. In contrast to these vortex
cores, the body of the current, below the vortex cores, cor-
respond to regions of high strain-rate and thus constitutes
regions where particles accumulate. Also, due to particle
inertia, long tongues of heavy particle laden fluids can be
seen to extend above the body of the current. Such flow
features can be expected to have an impact on instanta-
neous wall shear stress and deposition patterns.

Fig. 8 shows the vertical profile of streamwise-averaged
particle concentration at ~t ¼ 2:47 defined as
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~/ðxÞd ð~z;~tÞ ¼
1eLx=2

Z eLx=2

0

~/dð~x;~z;~tÞd~x : ð30Þ
The currents with inertial particles present a larger mean
particle concentration for ~z < 0:3, where the front of the
current is located. The concentration of particles over the
region 0:3 < ~z < 0:6 is lower for the inertial particles, since
this is where the vortices are located and the particles are
spun out of their cores. The relative difference between
the maximum values of ~/d for ~s ¼ 0:0 and ~s ¼ 0:05 is about
5%. However, it is observed from Figs. 6 and 7 that the in-
crease in concentration is not distributed uniformly along
the horizontal direction, but preferentially close to the head
of the current. This localized increase in concentration is
likely to be the main source of the 6% increase in the front
velocity observed in the slumping phase.

In the initial acceleration phase particles do not affect
substantially the flow structure compared to the scalar
case. Once Kelvin–Helmholtz vortices start forming (at
the beginning of the deceleration subphase), inertial parti-
cles resist spinning as fast as the carrier fluid, and on
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average diminish the initial strength of interface roll up.
This scenario of weaker interfacial vortices for the inertial
particles is accurate only in the deceleration subphase, and
soon changes in the constant velocity slumping phase. The
net circulation at the interface can be estimated as (Cantero
et al., 2007a)

Kð~tÞ � ~uF ~xF: ð31Þ

Thus in the constant velocity slumping phase circulation
increases linearly with time with the slope given by the
front velocity. With the higher front velocity, the net circu-
lation at the interface for the inertial particles is higher than
that for the corresponding scalar case (non-inertial parti-
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Fig. 9. Contours of ~kci (solid line) for ~t ¼ 10. Dash line is the contour for pareV s ¼ 0:0, frame (b) shows the solution for ~s ¼ 0:025 and eV s ¼ 0:0, and frame (
(c) shows increased vortical activity in the front and body of the current.
cles). Fig. 9 shows the swirling strength for time ~t ¼ 10.
Frame (a) shows the results for ~s ¼ 0:0 with eV s ¼ 0:0,
frame (b) shows the results for ~s ¼ 0:025 with eV s ¼ 0:0
and frame (c) shows the results for ~s ¼ 0:05 witheV s ¼ 0:0. The correspondence between the locations of in-
tense vortices as seen in the swirling strength contours and
the regions devoid of particles in the concentration con-
tours confirm the role of intense vortices. Consistent with
the estimate for interfacial circulation, the extent of vorti-
cal region observed for the ~s ¼ 0:05 case is much larger
than the ~s ¼ 0:0 case. Also in the case of inertial particles,
rolled up vortices can be observed to penetrate all the way
up to the front of the current, while in the scalar case, the
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ticle concentration ~/d ¼ 0:05. Frame (a) shows the solution for ~s ¼ 0 and
c) shows the solution for ~s ¼ 0:05 and eV s ¼ 0:0. At the instant shown, case
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rolled up vortices are located away from the front. It has
been argued that the dynamic low pressure associated with
the coherent vortices that are located close to the front of
the current lowers the driving horizontal pressure gradient
and thereby reduce the speed of the current (Cantero et al.,
2007a). Thus, despite the presence of coherent vortices
close to the front, the increased velocity of the current with
inertial particles, indicates the important role of particle
accumulation close to the front.

At a much later time of ~t ¼ 20, the current with
~s ¼ 0:05 presents a somewhat lower vortical activity in
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main difference is at the tail of the current (left half of the figures), where the
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the near-front region, while the currents with s ¼ 0:025
and ~s ¼ 0:0 show relatively stronger vortical activity near
the front of the current as seen in Fig. 10. This figure pre-
sents the same information as Fig. 9 at the later time of
~t ¼ 20. In the viscous phase self similar theories predict
the front velocity to be either ~uF � ~t5=8 or ~uF � ~t4=5 depend-
ing on the relative importance of interfacial vs bottom wall
friction (Hoult, 1972; Huppert, 1982). From (31), using
either of the power laws for the front velocity, it can be esti-
mated that in the viscous phase net circulation at the inter-
face decreases with time and thus formation of new vortices
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is not expected. The increased level of coherent vortices in
the ~s ¼ 0:0 and ~s ¼ 0:025 cases near the front is consistent
with the higher current speed observed for these cases dur-
ing the viscous decaying phase. Also, in these cases, the
strong interaction between the vortices at the front of the
current results in episodic increase and decrease in the cur-
rent speed, which can be observed in Fig. 2 as undulations.

5.3. Bottom shear stress

The shear stress distribution at the bottom boundary
plays an important role in the resuspension of particles
and thus in the time evolution of bed morphology.
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Fig. 11 shows the dimensionless bed shear stress,
ð1=ReÞo~uc=o~z, at ~t ¼ 5 when the front of the current is
located at ~x ’ 3 for the three simulations of different parti-
cle inertia. The inset in the figure shows the instantaneous
structure of the current visualized by concentration con-
tours for the case of ~s ¼ 0. The overall structure of the cur-
rent is similar for the other two cases as well (see Figs. 5–7).

As is evident from the figure, considerable variation can
be observed in the local shear stress distribution. The peak
located at ~x � ~xF in Fig. 11 is associated with the front. The
subsequent three peaks are associated with the vortices
identified in the inset as B1, B2 and B3. In the case of
the scalar current the peak associated with the vortex B1
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The net effect of inertia is to increase the deposition rate due to the larger
accumulation of particles near the bottom.
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is weak because the billow B1 has not grown strong
enough. The stronger vortices for the cases of ~s ¼ 0:025
and ~s ¼ 0:05 with the inertial particles are responsible for
the larger values of bed shear stress. With increasing iner-
tial effect of the particles the vortices B1, B2 and B3 move
farther away from the front, but contribute to increased
variation in the wall shear stress. Such differences in the
bottom shear stress distribution persists at later time
instances as well.

5.4. Effect of particle settling

Figs. 12–14 show the structure of the current for the
three different inertial effects (~s ¼ 0, 0:025 and 0:05),
respectively, but for the case of weak particle settling given
by eV s ¼ 0:005. At early times (~t < 15) the net loss of parti-
cles due to sedimentation is not significant to greatly alter
the dynamics of the flow. The observed flow structures at
these early times are quite similar to those observed with-
out any settling effect. Thus the role of particle inertia per-
sists with the presence of weak gravitational settling. At
later times, however, the loss of particles through settling
is sufficiently significant that the current looses its intensity
and begins to die quite rapidly. As can be expected, even
weak particle settling has a dramatic effect at long times.
Simulations with larger settling effects are uninteresting
as the current dies off too quickly. In reality, settling of par-
ticles must be balanced by resuspension of particles, and in
this limit the effect of particle settling in the bulk of the cur-
rent can be of interest.

The net instantaneous deposition of particles at the bot-
tom boundary can be defined as

_~msð~tÞ ¼
Z eLx

0

eV sz
~/dð~x;~z ¼ 0;~tÞd~x ð32Þ
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slower due to particle settling (compare to structure and front location in Fig
and the results computed for the three different values of ~s
is presented in Fig. 15. Up to ~t ’ 15 the deposition rate in-
creases. The increase is mainly due to the increase in plan-
form area covered by the current. At later times, although
the planform of the current continues to increase at a
slower rate, the reduction in concentration is sufficiently
large that net deposition decreases with time. Interestingly,
as observed in Figs. 12–14, ~t ’ 15 is about the time when
the effect of particle settling begins to have a strong effect
on the dynamics of the current. As can be seen from the fig-
ure, the net effect of inertia is to increase the deposition rate
at early times. The deposition rate is increased due to the
larger accumulation of particles in the body of the current
(~z < 0:3) as they are spun out of the vortices. At later times,
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due to increased reduction in the suspended mass of parti-
cles, the deposition rate for inertial particles decreases.

The cumulative deposition of particles can be computed
as

eDð~x;~tÞ ¼ Z ~t

0

eV sz
~/dð~x; ~z ¼ 0; t̂Þ d̂t: ð33Þ

Fig. 16 shows eD at three different time instances ~t ¼ 10, 20
and 45 for the three different inertial particles. Frame ðaÞ
shows the results for ~s ¼ 0, frame ðbÞ for ~s ¼ 0:025 and
frame ðcÞ for ~s ¼ 0:05. As explained above, deposition is
significantly enhanced by inertia. Not only the total depo-
sition is increased but also the deposit pattern is substan-
tially influenced. Preferential concentration of particles
generate localized regions of increased deposition which ex-
plains the different peaks in frames (b) and (c). It is interest-
ing to note for ~s ¼ 0:025 a regular undulating pattern of
enhanced and suppressed deposition is observed, which is
somewhat less pronounced in the cases of no inertial effect
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Fig. 16. A posteriori analysis of deposition (without resuspension included). T
deposit is visualized for three time instants: ~t ¼ 10, 20 and 45. Frame (a): eV s

~s ¼ 0:05.
and the largest inertial effect considered. It can also be ob-
served that the spatial wavelength of the undulatory depo-
sition pattern decreases with the increased inertial effect of
the particles.

6. Summary and conclusions

We have presented simulations of particulate currents
employing a two-phase flow model which includes both
the settling and also the particle inertia effects. The model
consists of conservation equations for the continuous
phase, an algebraic equation for the particle velocity based
on the equilibrium Eulerian approach (Ferry and Bala-
chandar, 2001), and a transport equation for the particle
volumetric concentration. By the incorporation of the equi-
librium Eulerian approach we avoid solving additional dif-
ferential equations for the conservation of particulate
momentum, which constitutes a big saving in computa-
tional time.
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The results presented in this work clearly show that par-
ticle inertia has an important influence on the structure and
dynamics of the particulate currents. Particles migrate from
the core of Kelvin–Helmholtz vortices and accumulate in
the front and body of the current. As a result the concentra-
tion of particles near the front is observed to be even higher
than the concentration in the original release. Such prefer-
ential concentration of particles at the front results in a
measurable increase in the constant velocity of the current
during the slumping phase. The level of increase in the con-
stant slumping phase velocity increases with particle inertia.
The change in the structure of the current modifies the vor-
tex pattern and its intensity. As a consequence we observe
the associated bottom shear stress to be more intense in
the case of inertial particles. This can have a strong influ-
ence on erosion and resuspension of particles from the bed.

Particle inertia has a significant effect on the deposition
rate. We observe local cumulative deposit to be more than
100% larger for the case of particles of weak inertia
(~s ¼ 0:05) as compared to particles of negligible inertial
effect (~s ¼ 0:0). This dramatic increase in the deposition
rate is due to the preferential accumulation of particles clo-
ser to the wall (~z < 0:3) as they are spun out of interfacial
vortices. Not only the deposition rate is increased but also
the deposition pattern is changed.

The present work focuses on flows with a single particle
size while natural flows are commonly multi-size. The
results presented here may have implications in deposits
displaying layering patterns and longitudinal shorting pro-
duced by flow with multi-size particles. The focus of the
present work is rather to introduce a novel Eulerian–Eule-
rian model where particle settling and inertia are taken into
account. However, incorporating several particle sizes in
the model is straightforward, and the analysis of such flows
is left for future research.
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